Nachklausurtutorium Theoretische Informatik

Karl Jochen Micheel & Christopher Happe Sommersemester 2019

Überblick

- 1. Grundlagen
- 2. Reguläre Sprachen
- 3. Kontextfreie Sprachen
- 4. Kontextsensitive und LO Sprachen
- 5. Berechenbarkeit
- 6. Primitive und Partielle Rekursion

Inhaltsverzeichnis

- DFA
- NFA
- Reguläre Ausdrücke
- Gleichungssysteme

Deterministische endliche Automaten: DFAs

- Qintupel $M = (\Sigma, Z, \delta, z_0, F)$
- Alphabet $\Sigma = \{a, b\}$
- Menge der Zustände $Z = \{z_0, z_1, z_2\}$
- Überführungsfunktion δ siehe Tafel
- Menge der Endzustände $F = \{z_2\}$ mit $F \subseteq Z$
- Zustandsgraph siehe Tafel
- Erweiterte Überführungsfunktion siehe Tafel

Reguläre Grammatik zu gegebenem DFA

- Gegeben: DFA $M = (\Sigma, Z, \delta, z_o, F)$
- Gesucht: Reguläre Grammatik $G = (\Sigma, N, S, P)$ mit L(G) = L(M)
- N = Z
- $S = Z_0$

Reguläre Grammatik zu gegebenem DFA

- P besteht aus:
 - $-z \rightarrow az'$, falls $\delta(z, a) = z'$, mit $z, z' \in Z$ und $a \in \Sigma$
 - Zusätzlich $z \rightarrow a$, falls zusätzlich $z' \in F$
 - $-z_0 \rightarrow \lambda$, falls $z_0 \in F$; Sonderregelung für das leere Wort auf G anwenden
- Beispiel Tafel

Nichtdeterministische endliche Automaten: NFAs

- Quintupel $M = (\Sigma, Z, \delta, S, F)$
- Alphabet $\Sigma = \{0, 1\}$
- Menge der Zustände $Z = \{z_0, z_1, z_2\}$
- Überführungsfunktion δ siehe Tafel
- Menge der Startzustände $S = \{z_0, z_1\}$ mit $S \subseteq Z$
- Menge der Endzustände $F = \{z_1, z_2\}$ mit $F \subseteq Z$
- Zustandsgraph siehe Tafel

Unterschiede zwischen DFA und NFA

- Überführungsfunktion:
 - Bei DFAs bildet δ auf einzelne Elemente ab
 - Bei NFAs bildet δ auf Mengen ab
- Startzustände:
 - DFAs haben genau einen Startzustand
 - NFAs haben einen oder mehr Startzustände

Unterschiede zwischen DFA und NFA

• Sprache:

- DFAs akzeptieren ein Wort, wenn der Automat nach einlesen des Wortes in einem Endzustand ist.
- NFAs akzeptieren ein Wort, wenn mindestens eine der Möglichkeiten das Wort einzulesen in einem Endzustand endet.
- Ein NFA kann zu einem Buchstaben des Alphabets in einem Zustand mehrere Übergänge haben

9 / 19

DFA zu gegebenem NFA

- Gegeben sei ein NFA M = $(\Sigma, Z, \delta, S, E)$
- Konstruiere DFA M' = $(\Sigma, Z', \delta', z0', F)$
- Z' ist die Potenzmenge von Z siehe Tafel
- $\delta'(Z^*, a) = Uz \in Z^* \delta(z, a)$ siehe Tafel
- Z0' = S
- $F = \{Z^* \subseteq Z \mid Z^* \cap E \neq \emptyset\}$
- Beispiel und Aufgabe an der Tafel

NFA zu gegebener regulärer Grammatik

- Sei eine reguläre Grammatik G = (Σ, N, S, P) gegeben
- Konstruiere NFA M = $(\Sigma, Z, \delta, S', F)$
- $Z = N \cup \{X\}$, mit $X \notin N \cup \Sigma$

•
$$F = \begin{cases} \{S, X\}, falls \ S \to \lambda \in P \\ \{X\}, falls \ S \to \lambda \notin P \end{cases}$$

- $S' = \{S\}$
- Für alle A \in N und a \in Σ sei $\delta(A, a) = (U_A \rightarrow aB \in P^{\{X\}}) \cup (U_A \rightarrow a \in P^{\{X\}})$

NFA zu gegebener regulärer Grammatik

Beispiel an der Tafel

Reguläre Ausdrücke

- Ø und λ
- Jedes a $\in \Sigma$
- Wenn α und β reguläre Ausdrücke sind, dann sind
 - αβ
 - $(\alpha + \beta)$
 - $(\alpha)^*$

reguläre Ausdrücke.

Beispiele

• Siehe Tafel!

Regulärer Ausdruck → NFA

- Konstruktion über Induktion
- Induktionsanfang: $\alpha = \emptyset$ oder $\alpha = \lambda$ oder $\alpha = a \in \Sigma$
- Folgender NFA akzeptiert L(α):

$$\bullet \ M = \left\{ \begin{array}{c} (\varSigma, \{z_0\}, \emptyset, \{z_0\}, \emptyset), \ falls \ \propto = \ \emptyset \\ (\varSigma, \{z_0\}, \emptyset, \{z_0\}, \{z_0\}), \ falls \ \propto = \ \lambda \\ (\varSigma, \{z_0, z_1\}, \big\{\delta(z_0, a) = \{z_1\}\big\}, \{z_0\}, \{z_0\}\big), \ falls \ \propto = a \in \varSigma \end{array} \right.$$

Regulärer Ausdruck → NFA

- Induktionsschritt
- Siehe Tafel!

Gleichungssysteme

- Gegeben: NFA M = $(\Sigma, Z, \delta, S, F)$ mit Z = $\{z_1,...,z_n\}$
- Gesucht: L(M)
- Methode: Bilde ein Gleichungssystem
 - 1. Jedes z_i ist Variable links
 - 2. Wenn $z_i \in \delta(z_i, a)$, dann ist az_i Summand rechts bei z_i
 - 3. Ist z_i Endzustand, ist Ø* Summand rechts.
- Löse das Gleichungssystem durch einsetzen
- Wenn X = AX + B, dann gilt X = A*B

Beispiel

• Siehe Tafel!

Fragen?